RHIC Polarimetry: Run11 summary & Run12 plans

W. Schmidke, on behalf of the polarimetry group

RHIC Retreat 21.07.2011

Run11 brief summary:

- Improvements Run9→Run11
- Detector performance
- Carbon targets, lifetime
- Results

Run12 plans:

- Detectors: types, calibration tools
- Targets: ongoing tests
- Stability issues: target orientation
- General issues
- Longer term prospects

Note:

Emphasis here on pC; H-jet progress, plans as noted

Run9→11 changes

Si detectors:

in ~increasing order of significance

- Continued program testing commercial (Hamamatsu) det.
 - 20/24 pC det.: from BNL instrumentation group
 - 4/24 pC det. from Hamamatsu; smaller area, rate (~1/4)
- H-jet: 1 bad det. replaced

DAQ:

- Attempted ½ pC readout in tunnel (shorter cables, cleaner signals)
- Electronics quickly failed (rad. damage); relocated outside
- Downstream pC not available earliest Run11

t0 monitors:

Scint. pair viewing one pC polar. (Y2Up); detect pC prompts

Run9→11 changes

- Through Run9, rate effects observed: pileup/signal loss, calibration, ...
- Run11: replaced preamps Q→I sensitive; pulse 10's nS→~10 nS
- Test pulse all preamps ~500 Hz

____ Average ___ Average Averages 100 ns 10 us M 1.00 us CH2 \ -408mV M 10.0ps CH1 \ -1.04V

Det. performance: α source calib.

- $^{\circ}$ ²⁴¹Am α source: Si det. gain calib., monitor
- Low rate; long runs maint. days:

- Largely stable gains ~couple-%
- Few isolated chan. wandered; no obvious cause

Si detector stability

- pC 'banana plot': TOF vs. k.e.:
- From fit k.e. $T=\frac{1}{2}M_{C}v^{2}$, 2-param:
 - dead layer: E loss near Si surface
 - t₀ readout time offset
- Here dead layer vs. fill:
- Much more stable; previous years garbled by rate effects

t₀ stability

• t₀'s slow drift few nS over Run11 apparent:

Blue-1 Upstream

• Jump few nS near end, 9 MHz RF lost; expected?

Yellow-2 Upstream

t₀ stability

- Can check Yel-Up t₀ with
 t₀ prompt scintillator
- Drift not apparent in scint., seems more stable; need to check all runs
- Jump near end in scint., not in banana fit
- In banana fit, params.
 t₀ ↔ deal layer correlated
- t₀ scintillator may disentangle, work in progress...

Target survival

- Run11 high target mortality: 36/48 targets lost (Run9 28/48 lost)
- Distribution of measurements before target lost:
 large infant mortality
- Other first observations:
 - loose targets survive better
 - targets get looser with use
- Also: our nominal target size is ~7μ wide across beam,
 - ~25 nm thick in beam direction; ² had also 8 2×, 2 4× thick targets
 - ⇒ thicker targets survive better
- Further studies ongoing (more later)

Run11 results

• The main results: Blu/Yel polarization vs. fill

- More polarimetry results already discussed various forums:
 e.g. Haixin yesterday polar.profiles, polar. lifetime, ...
- Here focus on internal polarimeter stability checks

pC/H-jet normalization

 Normalize each pC polar. to H-jet values for ring blue/yellow
 ⇒ effective A_N each polar.

 pC/H-jet ratio vs. RHIC store (compared to mean, absolute value arbitrary)

Uncert. dominantly H-jet stat.

- Should be constant in time
- Fluctuations (other than stat.) indicative of sys. variations

Polarization ratio Up/Dn vs. fill

- Final pC/H-jet normalization not applied in 24 GeV plots
- Check ratio constant in time:

■ Deviations from constant ⇒ measure of run-to-run systematics

Run 12 plans: detectors

pC

- As shown Si detectors stable & no degradation: α -calibration, t_0 & dead layer from 'banana fits'
- Will replace one (BNL) detector drawing varying high bias current
- Else will continue with same BNL, Hamamatsu detectors as Run11

H-jet

- Continue as Run11 w/ slower Q-sensitive preamps: rate not issue in H-jet; Q-sensitive lower noise
- If budget allows:
 - replace 1 pair det. w/ Hamamatsu single ch./strip photo-diode
 - better E-resolution, allow lower E-threshold
 - lower E → lower |t| → higher rate, statistics

Run 12 (pC): α -sources, t_0 scint.

- Detected ¹²C 0.4-0.9 keV range 1-2 μ in Si det. (dead layer ~ $\frac{1}{4}\mu$)
- \bullet ²⁴¹Am α 5.45 MeV range ~25 μ in Si; little sensitivity to ¹²C region
- \bullet Add new sources: ^{148}Gd 3.18 MeV α range ~12 μ in Si; closer to ^{12}C
- ullet Also: may try degrading lpha energies with foils to probe $^{12}{
 m C}$ region
- H-jet: add 2nd Gd source to side currently w/o
- Prompt scintillators in Y2Up pol.
 → new data, still exploring
- Already shown: check/constrain t_a
- May help further use of TOF info, e.g. alternative to energy cuts
- Need e.g. beam t-RMS, monitored:
- Will install prompt scintillators in all 4 pC polarimeters

Run12 preparations/plans: C targets

- Outstanding question on target mortality:
 - Are targets killed by exposure to beam?
 - Or is it step. motor motion, vibration, etc.?
- Started this week: target stress tests
 - rotate target ladders in/out beam ~1000 times
 - visually inspect survival every ~100 cycles
- If motor motion is fatal, may identify problem

Already observed:

- Looser, thicker targets survive better
- Tempting to act on this, but:
- Loose targets don't give faithful profiles:
 - horiz. axis ∝ step. motor position
 - step. motor position ≠ target position
- And loose targets also problem for polarization measurement stability

Ribbon target geometry

 Top view of vertical ribbon target, width w≈7µ, thickness t≈25nm:

- Scattered ¹²C nuclei lose energy in ¹²C ribbon target p-beam en route to Si detectors
- $_{\!\!\!\text{\tiny meas}}$ Measured $\mathsf{E}_{\!\!\!\text{\tiny meas}}$ down-shifted from scattered $\mathsf{E}_{\!\!\!\text{\tiny scat}}$
- If θ changes path length changes given E_{meas} corresponds to different E_{scat}, A_N:
- L \propto t/sin(θ) \Rightarrow steep change $A_{_{N}}$ as \rightarrow 0 $^{\circ}$

Loose targets ⇒ unstable orientation ⇒ unstable effective A_N

Run12 preparations/plans: C targets

- Even tight ribbons little control over θ
- Ribbons often twisted after mounted: try untwisting ⇒ broken
- Length scale of twists ≈ 150 μ
- A few crossings of θ =0° divergence across beam 0.5-1 mm

So the choice is:

- Loose ribbons, robust, but unstable measurements
- Tight ribbons, stable measurements, but short-lived

Probably choose: many poor measurements (over all Run12) over: few good measurements (start Run12 until all lost)

Longer term: consider alternatives to ribbon geometry...

Run 12 plans: general

H-jet: Standard maintenance &

- New dissociator stage: alleviate lower intensity Run11, requiring more maint.
 breaks; components in hand, assemble, test
- \bullet Running: monitor beam angle (BPMs), det. strip $\leftrightarrow \theta_{\text{scat}}$ correspondence

pC:

- Unify online \leftrightarrow offline analyses (e.g. use same A_N) \Rightarrow reduce confusion
- Operationally: work w/ controls group, get system more friendly
 - we only use pC sweep runs for polar.,
 can minimize fixed target runs (1 end of fill)
- w/o rate problems in Run11 were able to see smaller glitches
 developing new QA to catch these

H-jet & pC: 100 GeV bonus

- 5 weeks @ 100 GeV \Rightarrow pC A_N @ 100 GeV (for present detectors, electronics)
- With injection run (end Run11) and full Runs11,12 \Rightarrow pC A_N @ 24,100,250 GeV
- Improved study P-loss through ramp cycle

Longer term prospects

H-jet detectors:

• Increased detector area → statistics; new det. development

pC detectors:

Migrate BNL → commercial (Hamamatsu) detectors (cost, availability)

pC targets:

- Circularly symmetric targets would avoid orientation stability problem
- e.g. carbon wire:
- or a carbon tube:

- Starting to look like nanotubes
- To set the scale, present ribbons ~115 C atoms thick
- Need to explore alternate technologies, geometries...

Summary

few points to take home:

- pC rate problems (Run9 & earlier)
 are ~gone, remainder manageable
- Present Si detectors (H-jet &pC) are adequate for rates, doses so far
- Target orientation instability may be limiting factor in polar. measurement stability
- pC targets trade stability → lifetime need to explore alternatives longer term